iGCSE Computer Science – Unit 1	English Name:	Class:
Worksheet: Review, Part 1		©2024 Chris Nielsen – www.nielsenedu.com

1. W	rite the corre	ect vocabı	ılary word ne	xt to the bo	x that best de	escribes it.		(4)
	abstraction	algorithm	constant	construct	decompose	flowchart	pseudocode	variable
a)		b	reaking down a	complex pro	blem into sma	ller, more ma	nageable parts	
b)		a	memory locati	on that stores	an unchangeal	ble value		
c)		a	memory locati	on to store a v	value that may	change while	e the program is	s running
d)		a	precise method	l for solving a	a problem			
e)		a	smaller part us	ed as a buildi	ng block			
f)		a	structured, cod	le-like, high-l	evel descriptio	n of an algor	ithm	
g)		a	diagrammatic	representatior	n of an algorith	m		
h)		h	iding complexi	ty by focusing	g on the essent	ial features o	f a problem	

2. The teacher has a sorted list of names from a class, as shown below. For each stage, write "S" for the start index, "m" for the middle index, and "e" for the end index in order to identify the stages of a *binary search* to find the name "Jackson" in the list. In order to calculate the middle index, use: (start+end) DIV 2. The indices of the array are written above the first stage to help you. (Page 30, question 6) (7)

	0	1	2	3	4	5	6	7	8	9
	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
a)										
	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
b)										
	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
c)										
	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
d)										

- e) How many times did the algorithm need to compare two names before it was able to find the name "Jackson"?
- f) How many times would the algorithm need to compare two names in order to find the name "Linton"?
- g) How many time would the algorithm need to compare two names before exiting if the list was searched for the name "Johnson"?
- h) How many time would the algorithm need to compare two names before exiting if the list was searched for the name "Nielsen"? *Hint:* the answer is not the same as part (g).

English Name:		Class:
---------------	--	--------

3. A teacher has stored learner surnames as shown in the first row below. Complete the stages of the bubble sort algorithm when applied to this data. (Page 30, question 5) (5)

Marek	Jackson	Buchchan	Wilson	Abraham	French	Smith
	1					
	1	1				
	I					